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Abstract

Suppose G(V,E) be a graph and suppose u, v, x be vertices of graph G. A bijection f : V ∪
E → {1, 2, 3, ..., |V (G)| + |E(G)|} is called super local edge antimagic total coloring if for any
adjacent edges uv and vx in E(G), w(uv) 6= w(vx), which w(uv) = f(u) + f(uv) + f(v) for
f(V ) = {1, 2, 3, ..., |V (G)|}. By giving G a labeling f , we denotes the minimum number of
distinct weight of edges needed in G as γsleat(G). In this study, we proved the γsleat of paths and
its derivation.
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1. Introduction

For a graph G, a bijection f : V ∪ E → {1, 2, 3, ..., |V (G)| + |E(G)|} assigns each edges to
a particular distinct number from 1 up to |V (G)| + |E(G)|. Suppose u, v, x be vertices of graph
G. Weight of an edge w(uv) is defined as w(uv) = f(u) + f(uv) + f(v) for every edge uv
in G. A bijection f is called local edge antimagic total coloring if any adjacent edges uv and
vx, w(uv) 6= w(vx). For every distinct weight, we denote them as distinct colors. The local edge
antimagic total chromatic number ofG, γleat(G), is the minimum number of colors for edges taken
over all colorings induced by local antimagic total labelings of G. If vertices of G are assigned
smaller labels, then we call f as super local edge antimagic total coloring of G, and the minimum
number of colors as γsleat. For convenience, we will use the abbreviation SLEAT as super local
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edge anti-magic total. A SLEAT colorable graph is a graph that admits SLEAT coloring. Let
γ(G) be the edge chromatic number of G. We can observe that ∆(G) ≤ γ(G), where ∆(G) is
a maximum degree in graph G. A compilation of observation concludes that ∆(G) ≤ γ(G) ≤
γleat(G) ≤ γsleat(G) for an arbitrary graph G.

Ringel firstly introduced the term of antimagic labelings [6]. There are many researchs con-
ducted in antimagic labelings and its variation based on the survey of Gallian [5]. One of many
variations is local antimagic labelings.
Arumugam et al. introduced local antimagic as vertex local antimagic edge labelings [3]. Fol-
lowed by labels addition for the vertex, vertex local antimagic total labelings, one described in by
Kurniawati et al. [8]. The analog rises, edge local antimagic total labelings, explained by Agustin
et al. in [1] that includes path graph. If every vertex labels are smaller than edge labels, then it
is a super local edge antimagic total labelings, which Agustin et al. [2] and Kurniawati et al. [7]
describe in some other graph.

In this paper, we study super local edge anti-magic total coloring of path graph, path with
edge(s) addition which forms unicycle, connecting two disjoint path, and amalgamation of star. If
γ(G) = γsleat(G), then by the prior inequality, γleat(G) = γsleat(G). In other words, studies about
local edge anti-magic total (LEAT) coloring in all graphs that satisfy γ(G) = γsleat(G) are not
necessary.

2. Main Results

2.1. Path Graphs
First, we are going to establish SLEAT for paths. This theorem is used in every proceeding

theorems.

Theorem 2.1. Let n ≥ 2 be integer and Pn be a path with n vertices. γsleat(Pn) = 2.

Proof. Let V (Pn) = {vi|1 ≤ i ≤ n} and E(Pn) = {vivi+1|1 ≤ i ≤ n − 1}. Since ∆(Pn) = 2,
γsleat(Pn) ≥ 2. To show γsleat(Pn) ≤ 2, define f : V (Pn)∪E(Pn)→ {1, 2, ..., |V (Pn)|+|E(Pn)|}.

Case 1. n is odd.

Labels vertices and edges as follows

f(vi) =

{
i
2
, if i is even,

n+i
2
, if i is odd,

f(vivi+1) =

{
2n− i+ 1, if i is even,
2n− i− 1, if i is odd.

Hence, we get

w(vivi+1) = f(vi) + f(vivi+1) + f(vi+1) =

{
5n+1

2
+ 1, if i is even,

5n+1
2
− 1, if i is odd.
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Case 2. n is even.

Labels vertices and edges as follows

f(vi) =


n, if i = 1,

n+i
2
− 1, if i is even,
i−1
2
, if odd i > 1,

f(vivi+1) =


n+ 1, if i = 1,

2n− i, if i is even,
2n− i+ 2, if odd i > 1.

Hence, we get

w(vivi+1) = f(vi) + f(vivi+1) + f(vi+1) =

{
5n
2
− 1, if i is even,

5n
2

+ 1, if i is odd.

Since in every case there is only two distinct w, therefore f is a SLEAT labeling of Pn with
γsleat(Pn) = 2.

Figure 1: SLEAT coloring of P7 and P6

2.2. Unicycle graph
2.2.1. Path with an edge addition

Now, we start to add variation by adding an edge for path, forming a unicycle graph. We want
to exclude the possibility of forming a regular cycle.

Theorem 2.2. Let n ≥ 3 be integer, Pn be path, and G = Pn + vivj , where vi, vj ∈ V (Pn), with i
and j integers 1 ≤ i < j ≤ n and, except (i, j) = (1, n). γsleat(G) = 3.

Proof. Since ∆(G) = 3, γsleat(G) ≥ 3. To show that γsleat(G) ≤ 3, suppose g is a labeling of the
unicycle graph and f is a SLEAT coloring of Pn given in the proof of Theorem 2.1. We divide the
proof into 4 subcases.

Case 1. n is odd.

Subcase 1.1. Either i or j is odd. Labels vertices and edges as follows

g(Pn) = f(Pn),

g(vivj) = 2n.
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Hence, we get

w(vivj) = g(vi) + g(vivj) + g(vj) =

{
3n+ i+j

2
, if i and j are odd,

5
2
n+ i+j

2
, if i or j is odd.

Therefore, we get a minimum value of w(vivj) ≥ 5n+i+j
2

. Now, we will show that w(vivj) has
different value with w(vivi+1). It is clear that w(vivi+1) has a maximum value of 5n+1

2
+ 1. By the

premise, i+ j has the smallest possible value attainable i+ j ≥ 4. We observe that

w(vivj) ≥
5n+ 4

2
>

5n+ 1

2
+ 1,

which implies that w(vivj) is a third distinct weight.

Sub-case 1.2. i and j are even. Labels vertices and edges as follows

g(V (Pn)) = f(V (Pn)),

g(E(Pn)) = f(E(Pn)) + 1,

g(vivj) = n+ 1.

Since every labels of edges is increased by 1, we will have a new weight of

w(vivj) = g(vi) + g(vivj) + g(vj),

w(vivi+1) =

{
5n+1

2
+ 2 for i is even,
5n+1

2
for i is odd.

and w(vivj) = n+ 1 + i+j
2

. Now, we will show that w(vivj) has different value with w(vivi+1). It
is clear that w(vivi+1) has a minimum value of 5n+1

2
. By the premise, i+ j has the largest possible

value attainable i+ j ≤ 2n− 4. We observe that

w(vivj) ≤ n+ 1 +
2n− 4

2
= 2n− 1 <

5n+ 1

2
,

and w(vivj) is a third distinct weight.

Case 2. n is even.

Subcase 2.1. Either i or j is equal to 1 or even. Labels vertices and edges as follows

g(Pn) = f(Pn),

g(vivj) = 2n.
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Hence, we get possible weights

w(vivj) =


3n+ i+j

2
− 2, if i and j are even,

7
2
n+ j

2
− 1, if i = 1 and j is even,

5
2
n+ i+j

2
− 3

2
, if i is even and j is odd,

5
2
n+ i+j

2
− 3

2
, if i is odd and j is even,

3n+ j
2
− 1

2
, if i = 1 and j is odd.

We will show that w(vivj) has different value with w(vivi+1). It is clear that w(vivi+1) has a max-
imum value of 5n

2
+ 1. A minimum value for these possible weights is needed to be determined.

If both i and j are even, then i + j has smallest value attainable i + j ≥ 2 + 4 = 6, such that
w(vivj) ≥ 3n + 1. If i = 1 and j is even, then j has smallest value attainable j ≥ 4, such that
w(vivj) ≥ 7

2
n + 1 = 5

2
n + n + 1. If i is even and j is odd, then i + j smallest value attainable

i + j ≥ 2 + 5 = 7, such that w(vivj) ≥ 5
2
n + 2. If i = 1 and j is odd, then j smallest value

attainable j ≥ 3, such that w(vivj) ≥ 3n+ 1.

It can be seen that w(vivj) has a minimum value of 5
2
n+ 2 ≥ 5

2
n+ 1, since n is even. It means

w(vivj) is a third distinct weight.

Subcase 2.2. i and j are odd, and both of them does not equal to 1. Labels as follows

g(V (Pn)) = f(V (Pn)),

g(E(Pn)) = f(E(Pn)) + 1,

g(vivj) = n+ 1.

since every labels of edges is incremented by 1, we will have a new weight of

w(vivj) = g(vi) + g(vivj) + g(vj),

w(vivi+1) =

{
5n
2
, if i is even,

5n
2

+ 2, if i is odd.

and w(vivj) = n + i+j
2

. We will show that this w(vivj) has different value with w(vivi+1). It is
clear that w(vivi+1) has a minimum value of 5n

2
. By the premise, i + j has the largest attainable

value i+ j ≤ 2n− 4. We observe that w(vivj) ≤ n+ 2n−4
2

= 2n− 2 < 5n
2

. Therefore, w(vivj) is
a third distinct weight.

Since in every case γsleat(G) ≤ 3, we can deduce that g is SLEAT ofGwith γsleat(G) = 3.

2.2.2. Path with some edges addition
This method of edge addition can be done multiple times if it meets certain premises. We need

to introduce a convenient even function, defined as follows

even(n) =

{
1, if n is even,
0, if n is odd.
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Figure 2: SLEAT coloring of G = P7 + v2v5 and G = P6 + v3v5

Theorem 2.3. Let n ≥ 4 be integer, Pn be path, and G = Pn + {vi−kvj−k|0 ≤ k ≤ p, 0 ≤ p ≤
min{i− 1 + even(n), j − i− 1}} where vi−k, vj−k ∈ V (Pn), i and j satisfy 1 ≤ i < j ≤ n, i+ j
is odd, and (i, j) 6= (1, n). γsleat(G) = 3

Proof. Since ∆(G) = 3, γsleat(G) ≥ 3. To show that γsleat(G) ≤ 3, suppose g is a labeling of G
and f is a SLEAT coloring of Pn given in the proof of Theorem 2.1.
Labels vertices and edges as follows

g(Pn) = f(Pn),

g(vi−kvj−k) = 2n+ k.

The weight of edge are the following

w(vi−kvj−k) = g(vi−k) + g(vi−kvj−k) + g(vj−k) =

{
5
2
n+ i+j

2
, if n is odd, i+ j is odd,

5
2
n+ i+j

2
− 3

2
, if n is even, i+ j is odd.

We will show that w(vi−kvj−k) has different value with w(vivi+1). It is clear that w(vivi+1) has a
maximum value of 5n+1

2
+ 1. A minimum value for these possible weights is needed to be deter-

mined.

If both n and i + j are odd, then smallest value attainable i + j ≥ 1 + 3 = 4, such that
w(vi−kvj−k) ≥ 5

2
n + 2. If n is even, i 6= 1, and i + j is odd, then smallest value attainable

i+ j ≥ 2 + 5 = 7, such that w(vi−kvj−k) ≥ 5
2
n+ 2.

Since n ≥ 4, w(vi−kvj−k) has a minimum value of 5
2
n+2 > 5n+1

2
+1. As a result, w(vi−kvj−k)

is a third distinct weights. Therefore, g is a SLEAT of G with γsleat(G) = 3.

Figure 3: SLEAT coloring of G = P7 + {v4−kv7−k|0 ≤ k ≤ 2}
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2.3. Connecting disjoint paths
Another kind of graph that is observed in this study is some disjoint paths with addition of

edge(s) that connects some paths. Two kinds of this family of graph are hedge graph and hedgerow
graph. These two graph will be defined in the proceeding subsections.

2.3.1. Hedge graph
To start, we observe two disjoint paths with addition of one edge that connects the paths. Such

graph is called hedge graph Hd. Before giving the formal definition of hedge graph, we want to
exclude the possibility of connection that forms a simple path. For arbitrary set A,B, we use the
cartesian products of the two setsA×B = {(a, b)|a ∈ A, b ∈ B} in order to have simple notations.
Let Pm and Pn be path with V (Pm) = {vk|1 ≤ k ≤ m} and V (Pn) = {ul|1 ≤ l ≤ n}. We define
Hd(m,n, i, j) as follows

V (Hd(m,n, i, j)) = V (Pm) ∪ V (Pn),

E(Hd(m,n, i, j)) = E(Pm) ∪ E(Pn) ∪ {viuj|1 ≤ i ≤ m, 1 ≤ j ≤ n, (i, j) /∈ (1, n)× (1,m)}.

Theorem 2.4. For integers n ≥ m ≥ 3, if G = Hd(m,n, i, j), then γsleat(G) = 3.

Proof. Since ∆(G) = 3, γsleat(G) ≥ 3. To show that γsleat(G) ≤ 3, suppose g is a labeling of G
and f is a SLEAT coloring of Pn given in the proof of Theorem 2.1.

Case 1. i 6= j.

Add an edge v1u1 to form a Pm+n, apply labeling f in a path Pm+n from vn to um, then remove
v1u1. Now, g is a labelings that follows

g(viuj) = f(v1u1),

g(V (G)) = f(V (Pm+n)),

g(E(G)\{viuj}) = f(E(Pm+n)\{v1u1}).

If n+m is odd, we have the following weight

w(vivi+1) = w(uiui+1) =

{
5n+1

2
+ 1, if i is even,

5n+1
2
− 1, if i is odd.

As for n+m is even, we have the following weight

w(vivi+1) = w(uiui+1) =

{
5n
2
− 1, if i is even,

5n
2

+ 1, if i is odd.

We get g(v1) + g(viuj) + g(u1) = w(vivi+1) = w(uiui+1) for even i. Now, we can observe the
partition {g(vi)} and {g(uj)} for arbitrary i and j, to find that there is no pair of (g(vi), g(uj))
such that g(vi) + g(uj) = g(v1) + g(u1) which satisfies i 6= j. Hence, w(viuj) 6= w(vivi+1) and
w(viuj) 6= w(vivi+1) for even i.
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Next, we get g(v1) + g(viuj) + g(u1) − 2 = w(vivi+1) = w(uiui+1) or g(v1) + g(viuj) +
g(u1) + 2 = w(vivi+1) = w(uiui+1) for odd i. Again, we can observe the partition {g(vi)} and
{g(uj)} for arbitrary i and j, to find that there is no pair of (g(vi), g(uj)) such that g(vi) + g(uj) =
g(v1) + g(u1) − 2 or g(vi) + g(uj) = g(v1) + g(u1) + 2. Hence, w(viuj) 6= w(vivi+1) and
w(viuj) 6= w(vivi+1) for odd i.

Case 2. i = j, and n 6= m.

Add an edge vnum to form a Pm+n, apply labeling f to path Pm+n from v1 to u1, then remove
vnum. Now, g is a labelings that follows

g(viuj) = f(vnum),

g(V (G)) = f(V (Pm+n)),

g(E(G)\{viuj}) = f(E(Pm+n)\{vnum}).
If n+m is odd, we have the following weight

w(vivi+1) = w(ui+1ui+2) =

{
5n+1

2
+ 1, if i is even,

5n+1
2
− 1, if i is odd.

With the addition of w(u1u2) = 5n+1
2

+ 1. As for n+m is even, we have the following weight

w(vivi+1) = w(uiui+1) =

{
5n
2
− 1, if i is even,

5n
2

+ 1, if i is odd.

We get g(vn) + g(viuj) + g(um) = w(vivi+1) = w(ui+1ui+2) = w(u1u2) for n and i that have
the same parity. Now, we can observe the partition {g(vi)} and {g(ui)} for arbitrary i, to find that
there is no pair of (g(vi), g(ui)) such that g(vi) + g(ui) = g(vn) + g(um). Hence, w(viuj) does not
equal any of w(vivi+1), w(ui+1ui+2), or w(u1u2).

Next, we get g(vn) + g(viuj) + g(um) − 2 or g(v1) + g(viuj) + g(u1) + 2 to be equal with
w(vi+1vi+2) = w(uiui+1) = w(v1v2) for n and i have different parity. Again, we can observe the
partition {g(vi)} and {g(ui)} for arbitrary i, to find that there is no pair of (g(vi), g(ui)) such that
g(vi) + g(ui) = g(vn) + g(um) − 2 or g(vi) + g(ui) = g(vn) + g(um) + 2. Hence, w(viuj) does
not equal any of w(vi+1vi+2), w(uiui+1), or w(v1v2).

Case 3. i = j, and n = m, except n = 3.

Since the graph with i = 2 is isomorphic with i = n − 1, it is only necessary to determine
labels for i ≥ 3.

Add an edge v1u1 to form a path Pm+n, apply labeling f to Pm+n from vn to um, then remove
v1u1.
If n is odd, g is a labelings that follows

g(viuj) = f(u1u2),
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g(u1u2) = f(v1u1),

g(V (G)) = f(V (Pm+n)),

g(E(G)\{viuj ∪ u1u2}) = f(E(Pm+n)\{v1u1 ∪ u1u2}).

If n is even, g is a labelings that follows

g(viuj) = f(v1v2),

g(v1v2) = f(v1u1),

g(V (G)) = f(V (Pm+n)),

g(E(G)\{viuj ∪ v1v2}) = f(E(Pm+n)\{v1u1 ∪ v1v2}).

By preceding labelings, we have the following weight

w(vi+1vi+2) = w(ui+1ui+2) =

{
5n
2
− 1, if i is even,

5n
2

+ 1, if i is odd.

In addition, if n is odd, w(v1v2) = w(vi+1vi+2) and w(u1u2) = w(viuj). While if n is even,
w(u1u2) = w(ui+1ui+2) and w(v1v2) = w(viuj). By case 1, it is already proven that w(viuj) is
distinct.

Case 4. i = j = 2, and n = m = 3.

This is the only one specific graph that does not belong to any preceding case. Thus, we can
simply do an enumeration for completing the theorem. Labels the graph G as in Figure 4.

Since every possible graph is covered, therefore γsleat(Hd(m,n, i, j)) = 3.

Figure 4: SLEAT coloring of Hd(4, 3, 3, 2), Hd(5, 4, 2, 2), Hd(4, 4, 3, 3), and Hd(3, 3, 2, 2)
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2.3.2. Hedgerow
Suppose we have m disjoint paths with length of n. Every neighbouring path is connected with

an edge that is uniform through every two connected paths. Such graph is called hedgerow graph
Hr. Let mPn be the disjoint union of m number of Pn with V (mPn) = {vkl |1 ≤ l ≤ n, 1 ≤ k ≤
m}. Formally, we define hedgerow graph Hr(m,n, i, j) as follows

V (Hr(m,n, i, j)) = V (mPn),

E(Hr(m,n, i, j)) = E(mPn) ∪ {vki vk+1
j |1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ k ≤ m− 1}.

We start an attempt to find hedgerow for m ≥ 3. We only find the value of γsleat for hedgerow
graph for some (m,n, i, j).

Theorem 2.5. Let integer m ≥ 2 and integer n ≥ 2. For G ∼= Hr(m,n, i, j),

1. If n is even, i 6= j, and i 6= n− j + 1, then γsleat(G) = 3.
2. If m is odd, i = j, and i /∈ {1, n}, then γsleat(G) = 4.

Proof. By Theorem 2.1, we have f , SLEAT labelings of path graph. Suppose g is SLEAT labelings
of the connected multiple path.

Case 1. n is even, i 6= j, and i 6= n− j + 1

Since ∆(G) = 3, γsleat(G) ≥ 3. Next, we will show that γsleat(G) ≤ 3. Since the graph has
reflexive form, if i = 1 we can redefine (i, j) = (1, j′) into (i, j) = (j′, 1), thus we only consider
i ≥ 2. Add edges vknv

k+1
1 for every integer k ∈ [1,m], forming Pmn, apply f in a path from v11 to

vmn . Now, for every integer k ∈ [1,m− 1], g is a labeling that follows

g(vki v
k+1
j ) = f(vknv

k+1
1 ),

g(V (G) = f(V (Pmn)),

g(E(G\(∪k{vki vk+1
j }) = f(E(Pmn\(∪k{vknvk+1

1 }).

In the proof of Theorem 2.4, we have shown that w(v1i v
2
j ) with two other weights in the paths, with

restriction of i 6= n− j + 1. Hence, we have the weights

w(vki v
k
i+1) =

{
5
2
nm− 1, if i is even,

5
2
nm+ 1, if i is odd.

Originally, f(vkn) + f(vknv
k+1
1 ) + f(vk+1

1 ) is constant for every integer k ∈ [1,m − 1]. Since
g(vkn) − g(vki ) and g(vk+1

1 ) − g(vk+1
j ) are constant for the same k, we have third distinct weight

w(vki v
k+1
j ). Hence, γsleat(G) = 3.

Case 2. m is odd, i = j, and i /∈ {1, n}
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Since ∆(G) = 4, γsleat(G) ≥ 4. Next, we will show that γsleat(G) ≤ 4. Add edges vknv
k+1
n for

every odd integer k ∈ [1,m − 2] and vk1v
k+1
1 for every even integer k ∈ [2,m − 1], forming Pmn,

apply f in a path from v11 to vmn . Now, for every integer k ∈ [1,m− 1] and integer k′ ∈ [1, m−1
2

], g
is a labeling that follows

g(vki v
k+1
i ) =

{
f(vknv

k+1
n ) for k is odd,

f(vk1v
k+1
1 ) for k is even,

g(V (G)) = f(V (Pmn)),

g(E(G\(∪k{vki vk
′+1

i }))) = g(E(Pmn\(∪′k{v2k
′

1 v2k
′+1

1 , v2k
′−1

n v2k
′

n }))).

Since f(v2k
′

1 v2k
′+1

1 )−f(v2k
′−1

n v2k
′

n ) is constant for every k′ ∈ [1, m−1
2

],w(v2k
′

1 v2k
′+1

1 ) is constant
for every k, w(v2k

′−1
n v2k

′
n ) is constant for every k, and w(v2k

′
1 v2k

′+1
1 ) 6= w(v2k

′−1
n v2k

′
n ). Hence,

γsleat(G) = 4.
Therefore, the theorem holds.

Figure 5: SLEAT coloring of Hr(4, 4, 4, 3) and Hr(5, 4, 2, 2)

The same procedure can also be applied if i ∈ {1, n} for G, but it will not give an exact value
of γsleat(G) since γ(G) is still lower than the number of the weights. Despite the uncertainty, we
establish the corollary as follows.

Corollary 2.1. Let integer n ≥ 2 and odd integer m ≥ 3. If G ∼= Hr(m,n, i, i), then 3 ≥
γsleat(G) ≥ 4

It can be seen that the graph from the corollary is isomorphic with the comb product of Pm

with Pn−1. We revised a theorem that given by Kurniawati et al. in [7].
We attempted to find the value for some (m,n, i, j) that did not satisfy preceding theorem

premises, but it is not completed yet. It is left as an open problem.

Open Problem 1. Find the value of γsleat(Hr(m,n, i, j)) for remaining cases of (m,n, i, j).
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2.4. Amalgamation of Star
We proceed by finding SLEAT for star graph. Star graph is denoted as Sm where V (Sm) =

{c, vi|1 ≤ i ≤ m} and E(Sm) = {cvi|1 ≤ i ≤ m}. Since every edge in the graph is adjacent,
γ(Sm) = m. Since γ(G) ≤ γsleat(G) ≤ |E(G)| for arbitrary graph G, it is clear that γsleat(Sm) =
m. If one want an example how to achieve such graph, labels as follows f(vi) = i, f(c) =
m+ 1, f(cvi) = m+ i+ 1. The weights is going to be consecutive by 2 as the common difference.

In this section, we study an amalgamation of star and graph which have certain γsleat.

Theorem 2.6. Suppose G1 be a SLEAT colorable graph and G2
∼= Amal(Sm, G1; c) which vertex

c is a center in Sm, for integer m ≥ 1. γsleat(G2) ≤ γsleat(G1) +m

Proof. Let nv = |V (G1)| and ne = |E(G1)|. Suppose g is the SLEAT labelings of G1 and f is the
SLEAT labelings of G2. Labels as follows:

g(V (G1)) = f(V (G1)),

g(E(G1)) = f(E(G1)) +m,

g(vi) = nv + i,

g(cvi) = nv + ne +m+ i.

Let wf is weights as a result of f . Now, we define w′f = wf + m. Next, we define ws as
ws = g(vi) + g(cvi) + g(c) = 2nv +ne +m+ 2i+ f(c). Now, every distinct w′f and every distinct
ws are weights that is generated from g. What is left to prove is w′f 6= ws for arbitrary possible
weights.
Let p is the lowest f(c) for arbitrary c. Since p is adjacent with any w′f , we can observe the
upper bound for w′f by assuming w′f contains the largest vertex label nv, and largest edge label
nv + ne +m. As a result,

w′f ≤ nv + nv + ne +m+ p = 2nv + ne +m+ p

Now, we can find the lower bound any ws, by choosing the lowest possible i = 1, then

ws ≥ 2nv + ne +m+ p+ 2

It is clear that 2nv +ne +m+p+2 ≥ 2nv +ne +m+p. Therefore, w′f 6= ws for arbitrary possible
weights. This holds the theorem.

The preceding theorem applies for any vertex c in graph G1. By choosing certain c, we have
Corollary 2.2.

Corollary 2.2. Let G1 is a SLEAT colorable graph and G2
∼= Amal(Sm, G1; c) which vertex c is

a center in Sm, for integer m ≥ 1. If deg(c) = ∆(G2), γsleat(G2) = γsleat(G1) +m.
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Figure 6: SLEAT coloring of Amal(S3, Hd(5, 4, 2, 2), c) and Amal(S4, P6, c)

3. Summary

Here we summarize our results in Table 1.

Table 1: Summary

Graph Notation γsleat Condition
Path Pn 2
Path + edge Pn + vivj 3 1 ≤ i < j ≤ n, and (i, j) 6=

(1, n)
Path + multiple
edges

Pn+{vi−kvj−k|0 ≤ k ≤ p} 3 1 ≤ i < j ≤ n, i + j is odd,
0 ≤ p ≤ min{i−1+even(n), j−
i− 1} and (i, j) 6= (1, n)

Hedge graph Hd(m,n, i, j) 3 vi ∈ V (Pn), uj ∈ V (Pm), and
(i, j) /∈ (1, n)× (1,m)

Hedgerow
graph

Hr(m,n, i, j) 3 n is even, i 6= j, and i 6= n−j+1

Hedgerow
graph

Hr(m,n, i, j) 4 m is odd, i = j, and i /∈ {1, n}

Star Sn n
Amalgamation
of star

Amal(G,Sn; c) at most
γsleat(G) +n

c ∈ V (G), V (Sn) and c is center
in Sn

Amalgamation
of star

Amal(G,Sn; c) γsleat(G) +n c ∈ V (G), V (Sn), c is center in
Sn, and deg(c) = ∆(G)
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